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1. Introduction

For n ≥ 2, let Ω ⊂ Rn be a bounded simply connected domain having C2 smooth boundary
Γ = ∂Ω. For T > 0, let us introduce the parabolic operator LA,q in the cylinder Q := (0, T )×Ω by

LA,q := ∂t −
n∑
j=1

(∂j + Aj(t, x))2 + q(t, x), (1.1)

where A(t, x) := (A1(t, x), A2(t, x), ..., An(t, x)) ∈ (W 1,∞(Q))n and q ∈ L∞(Q). We consider an
initial boundary value problem (IBVP) known for the convection-diffusion equation which models
physical processes like mass or heat transfer within a body and, also appears in probabilistic study of
diffusion process (like, the Fokker-Planck and Kolmogorov equations), finance (like, the BlackScholes
or the Ornstein-Uhlenbeck processes) and chemical engineering (for describing the movement of
macro-particles) 

LA,qu(t, x) = 0, (t, x) ∈ Q,
u(0, x) = 0, x ∈ Ω,

u(t, x) = f(t, x), (t, x) ∈ Σ := (0, T )× Γ.

(1.2)

We first briefly discuss some well-posedness results regarding the above IBVP. Following [17], one
can consider suitable spaces for the forward problem (1.2). However, in the context of our article,
we assume more regularity on the coefficients in the operator (1.1). Inspired by [6], for a given
m > 0, we define the admissible set M(m) of coefficients A and q by

M(m) =
{

(A, q) ∈ Hk(Q;Rn)×Hk−1(Q;R); ‖A‖Hk(Q;Rn) + ‖q‖Hk−1(Q;R) ≤ m and k > 1+n
2

+ 3
}
.

Now, we introduce some time-dependent Sobolev spaces for p, q being non-negative real numbers
and M = Ω or, Γ

Hp,q ((0, T )×M) := L2 (0, T ;Hp(M)) ∩Hq
(
0, T ;L2(M)

)
,

1
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equipped with the norm

‖u‖Hp,q((0,T )×M) = ‖u‖L2(0,T ;Hp(M)) + ‖u‖Hq(0,T ;L2(M)).

Further, we denote Hp,q
0 (Σ) := {f ∈ Hp,q(Σ); f(0, x) = 0, x ∈ Ω}. The existence of unique solution

u ∈ H2,1(Q) to the IBVP (1.2) for a given Dirichlet data f ∈ H
3
2
, 3
4

0 (Σ) follows from [47]. Also then,
we have some C > 0 depending only on m and Q such that

‖u‖H2,1(Q) ≤ C‖f‖
H

3
2 ,

3
4

0 (Σ)
.

We can define the Dirichlet to Neumann (DN) map Λ∗A,q : H
3
2
, 3
4

0 (Σ)→ H
1
2
, 1
4 (Σ) as

Λ∗A,q(f) = (∂νu+ 2(ν · A)u) |Σ,
where u solves (1.2) and ν(x) denotes the unit outward normal at x ∈ Γ.

The inverse problem under consideration here is the stable recovery of time-evolving properties
of a homogeneous medium such as A and q, by applying heat source on Σ and measuring the
heat flux on a part of Σ. To be precise, we study the stability aspects for unique recovery of
(A, q) from a partial DN map which measures the Neumann outputs on a part of Σ related to a
small open neighborhood of the ω0-illuminated face which is defined in (2.1). It is known that the
convection term can be recovered only under the divergence free condition (with respect to space
variables) because of the non-uniqueness associated to the gauge transform (see [51, 55]). We derive
a stability estimate for the divergence free convection term A. In doing so, a stability result for
analytic continuation from [49] will be very helpful (see also [57]). Also we borrow an important
construction for the principal term in the geometric optics solutions from [43] which was originally
used in the framework of dynamical Schrödinger equation. The decay in the remainder terms of the
geometric optics solutions follows from a Carleman estimate. For stability of the density coefficient,
we again use the stability result for analytic coninuation in combination with the stability estimate
of A.

The issues regarding unique and stable determination of coefficients appearing in parabolic PDEs
from boundary measurements have attracted much attention during last several decades. Motivated
by the seminal work [56] by Sylvester and Uhlmann, Isakov in [32] uniquely determined the time-
dependent coefficient when A = 0, by using an argument based on completeness of the product of
solutions. The stability issues of the same problem has been resolved by Choulli in [23]. In [2],
Avdonin and Seidman used boundary control (BC) method pioneered by Belishev which is fur-
ther developed by Katchalov, Kurylev and Lassas (see [4, 35] and references therein), to establish
uniqueness result for time-independent q. In the absence of any zeroth order term, Cheng and
Yamamoto proved in [18, 19, 20] uniqueness of convection term which belongs to some Lebesgue
spaces from single measurement when n = 2. Gaitan and Kian in [30] obtained stable determina-
tion result for time-dependent q in a bounded cylindrical domain when A = 0 which was further
generalized in the article [45] by Kian and Yamamoto proving analogous results in time-fractional
diffusion equation settings. In [25], Choulli and Kian derived logarithmic stability estimates for
time-dependent term q working only with partial DN map, in the absence of first order coefficients.
In [12], Bellassoued and Rassas stably determined the convection term A and density coefficient
q both of which are time-independent. Vashisth and Sahoo in [55] obtained unique determina-
tion result for time-dependent convection term (modulo gauge equivalence) and density coefficient
from full Dirichlet and partial Neumann data. In this work, we have proved the stability esti-
mate for determining the time-dependent convection term and the density coefficients from the
knowledge of full Dirichlet data and the Neumann data measured on a portion which is slightly
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bigger than half of the lateral boundary. We refer to [10, 21, 22, 24, 26, 23, 27, 30, 33, 34, 50]
for more works in inverse problems related to parabolic PDEs. Also, there have been a consider-
able amount of work done in the context of hyperbolic and dynamical Schrödinger equations (see
[1, 3, 7, 11, 14, 15, 29, 41, 42, 43, 44, 13, 52, 53, 8, 9, 31, 39, 37, 38, 40, 46, 54, 48, 36] and references
therein).

The article is organized as follows. In §2, the main result of the article is stated. Then boundary
and interior Carleman estimates for the operator LA,q are derived in §3, followed by the construction
of geometric optics solutions in §4. Finally, we discuss the stable determination results for the
convection term A and density coefficient q in §5.

2. Statement of the main result

We begin this section by introducing some notations. Following [16], fix an ω0 ∈ Sn−1 and define
the ω0-shadowed and ω0-illuminated faces by

∂Ω+(ω0) := {x ∈ ∂Ω : ν(x) · ω0 ≥ 0} , ∂Ω−(ω0) := {x ∈ ∂Ω : ν(x) · ω0 ≤ 0}

of ∂Ω where ν(x) is the outward unit normal to ∂Ω at x ∈ ∂Ω. For a given small ε > 0, we define
the small open neighborhoods of ∂Ω+(ω0) and ∂Ω−(ω0) by

∂Ω+,ε/2(ω0) :=
{
x ∈ ∂Ω; ν(x) · ω0 >

ε

2

}
, and ∂Ω−,ε/2(ω0) :=

{
x ∈ ∂Ω; ν(x) · ω0 <

ε

2

}
. (2.1)

respectively. Corresponding to ∂Ω±(ω0) and ∂Ω±,ε/2(ω0), we denote the lateral boundary parts by
Σ±(ω0) := (0, T ) × ∂Ω±(ω0) and Σ±,ε/2(ω0) := (0, T ) × ∂Ω±,ε/2(ω0) respectively. Let us define the

partial Dirichlet to Neumann map denoted by ΛA,q : H
3
2
, 3
4

0 (Σ)→ H
1
2
, 1
4 (Σ−,ε/2(ω0)) as

ΛA,q(f) = (∂νu+ 2(A · ν)u)
∣∣
Σ−,ε/2(ω0)

(2.2)

We now state the main result of this article.

Theorem 2.1. Let (Ai, qi) ∈ M(m), i = 1, 2 and T > diam Ω, where Ω ⊂ Rn is a bounded C2

smooth domain for n ≥ 2. We denote by Λi the partial DN map corresponding to LAi,qi as defined
in (2.2). Under the assumption A1|Σ = A2|Σ and ∇x · A1 = ∇x · A2 in Q, we have the following
estimates for some positive constants C, α1, α2, β1 and β2 depending on m and Q

‖A1 − A2‖L2(Q) ≤ C (‖Λ1 − Λ2‖α1 + |log | log ‖Λ1 − Λ2‖||α2) ,

‖q1 − q2‖L2(Q) ≤ C
(
‖Λ1 − Λ2‖β1 + |log |log | log ‖Λ1 − Λ2‖| ||β2

)
.

We remark here that, in the recent work [6], Bellassoued and Ben Fraj discussed the stability as-
pects of determining the time-dependent coefficients appearing in the convection-diffusion equation
and proved logarithmic and double logarithmic stability results for the convection term and density
coefficient respectively. Moreover the Neumann measurements there are taken on any arbitrary
part of the lateral boundary Σ; but the coefficients in [6] are assumed to be known in an open set
containing Σ which is essential to apply a local unique continuation result near the boundary. In
contrast to [6], we consider coefficients which agree only on the lateral boundary. Although we work
with the Neumann data measured on a particular subset of Σ, which is slightly more than half of
the boundary and obtain double and triple logarithmic stability estimates for A and q respectively.
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3. Boundary and interior Carleman estimates

We prove here a boundary Carleman estimate involving for the operator LA,q which will be used
to control the boundary terms appearing in the integral identity given by (5.6) where no information
is given. Now, we choose x0 ∈ Rn such that inf

x∈Ω
(x+ x0) · ω > 0. For this choice of ω and x0, the

derivation of Carleman estimate goes as follows.

Theorem 3.1. Let φ(t, x) = λ2t + λx · ω and u ∈ C2(Q) with u(0, ·) = 0 and u|Σ = 0. For
(A, q) ∈M(m) there exist λ1, C > 0, depending only on m and Q such that∫

Q

e−2φ(t,x)
(
λ2|u(t, x)|2 + |∇xu(t, x)|2

)
dxdt+

∫
Ω

e−2φ(T,x)
(
λ|u(T, x)|2 + |∇xu(T, x)|2

)
dx

+ λ

∫
Σ+,ω

e−2φ(t,x)ω · ν(x)|∂νu(t, x)|2 dSxdt ≤ C

∫
Q

e−2φ(t,x)|LA,qu(t, x)|2 dxdt

+ Cλ

∫
Σ−,ω

e−2φ(t,x)|ω · ν(x)||∂νu(t, x)|2 dSxdt

(3.1)

holds for all λ ≥ λ1.

Proof. We have to convexify the Carleman weight φ appropriately due to the presence of first order
derivatives in LA,q. For a proof of the boundary Carleman estimate, we refer to [17] where the
following convexified weight has been considered for s > 0

φs(t, x) := λ2t+ λx · ω − s ((x+ x0) · ω)2

2

where x0 ∈ Rn is as mentioned in the line just before the statement of Theorm 3.1. �

We write down the interior Carleman estimate which easily follows from Theorem 3.1 and will
be used to construct the geometric optics solutions.

Corollary 3.2. (Interior Carleman estimate). For (A, q) ∈ M(m) there exist λ1, C > 0 depending
only on m and Q such that the following estimate holds for u ∈ C∞c (Q) and λ ≥ λ1∫

Q

e−2φ(t,x)
(
λ2|u(t, x)|2 + |∇xu(t, x)|2

)
dxdt ≤ C

∫
Q

e−2φ(t,x)|LA,qu(t, x)|2 dxdt.

4. Construction of geometric optics solutions

In this section, we construct the geometric optics solutions for the parabolic operator LA,q and its
formal L2 adjoint L∗A,q = L−A,q. For λ > 0, let φ(t, x) := λ2t+ λx · ω be the weight function. Then
we construct the geometric optics solutions u and v for the operators LA,q and L∗A,q respectively
which have the following forms

u(t, x) = eφ(t,x) (Bg +Rg) (t, x),

and v(t, x) = e−φ(t,x) (Bd +Rd) (t, x).
(4.1)

Next we show that for λ large enough, the remainder terms Rg and Rd can be estimated in terms of
their principal terms Bg and Bd respectively. The decay of Rd and Rg in λ will be crucial to derive
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stability results from an integral identity obtained by using the solution to an adjoint problem and
the given data.

We start with some definition and notations. For m ∈ R, we define L2(0, T ;Hm
λ (Rn)) by

L2(0, T ;Hm
λ (Rn)) := {u(t, ·) ∈ S ′(Rn) :

(
λ2 + |ξ|2

)m/2Fxu(t, ξ) ∈ L2((0, T )× Rn)},

equipped with the norm

‖u‖2
L2(0,T ;Hm

λ (Rn)) =

∫ T

0

∫
Rn

(
λ2 + |ξ|2

)m |Fxu(t, ξ)|2 dξdt,

where S ′(Rn) denote the space of tempered distributions on Rn and Fx is the Fourier transform
with respect to the space variables. For 0 < δ << 1, we consider a sequence ηδ ∈ C∞c (δ, T − δ) such
that

ηδ ≡ 1 on [2δ, T − 2δ] and, ‖ηδ‖Wk,∞(R) ≤ Cδ−k, for k ∈ N.

Theorem 4.1. Let δ ∈ (0, T/4), LA,q be as in (1.1) and for ω ∈ Sn−1, let φ(t, x) = λ2t+ λx · ω.

(1) (Exponentially growing solutions) For (τ, ξ) ∈ R1+n such that ω · ξ = 0, (A, q) ∈M(m) and
D ∈ W 3,∞(Q;Rn) with ‖D‖W 3,∞(Q;Rn) ≤ C0, there exists λ0 > 0 depending on m,C0 and Q
such that for λ ≥ λ0, we can find vg ∈ H2,1 ((0, T )× Ω) solution to{

LA,qv(t, x) = 0, (t, x) ∈ Q,
v(0, x) = 0, x ∈ Ω

taking the form

vg(t, x) = eφ(t,x) (Bg(t, x) +Rg(t, x)) (4.2)

where Bg(t, x) is given by

Bg(t, x) = ηδ(t)
ξ

|ξ|
· ∇x

(
e−i(τ,ξ)·(t,x)e(

∫
R ω·D(t,x+sω) ds)

)
e(

∫∞
0 ω·A(t,x+sω) ds) (4.3)

and Rg satisfies the following estimate

‖Rg‖L2(0,T ;Hk(Ω)) ≤ Cλ−1+kδ−3〈τ, ξ〉3, for k ∈ {0, 1, 2}. (4.4)

(2) (Exponentially decaying solutions) For (A, q) ∈ M(m), there exists λ0 > 0 depending on m
and Q such that for λ ≥ λ0, we can find vd ∈ H2,1 ((0, T )× Ω) solution to{

L∗A,qv(t, x) = 0, (t, x) ∈ Q,
v(T, x) = 0, x ∈ Ω.

taking the form

vd(t, x) = e−φ(t,x) (Bd(t, x) +Rd(t, x)) (4.5)

where Bd(t, x) is given by

Bd(t, x) = ηδ(t)e
(
∫∞
0 ω·A(t,x+sω) ds) (4.6)

and Rd satisfies the following estimates

‖Rd‖L2(0,T ;Hk(Ω)) ≤ Cλ−1+kδ−3, for k ∈ {0, 1, 2}.
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The proof of the above Theorem relies mainly on some arguments from functional analysis as we
need to consider appropriate functional which would be extended and identified by Hahn-Banach and
Riesz representation theorems. But continuity of such functional would be possible once we obtain
suitable negative order Carleman estimates. Thus we state the following Carleman estimate in a
negative order Sobolev space and proof of this estimate follows from very standard arguments (see
[6, 8, 9, 17, 28] and references therein). To state the Carleman estimate, we define the conjugated
operator Pλ by

Pλ := e−φLA,qeφ.

Proposition 4.2. (Shifting the index). Let A, q, φ and LA,q be as in Theorem 4.1.

(1) Let Pλ := e−φLA,qeφ, then there exists λ0 and C > 0 such that for u ∈ C1([0, T ];C∞c (Ω))
with u(T, ·) = 0 and λ ≥ λ0, we have

‖u‖L2(0,T ;H−1
λ (Rn)) ≤ C‖Pλu‖L2(0,T ;H−2

λ (Rn)). (4.7)

(2) Let P∗λ := eφL∗A,qe−φ, then there exists λ0 and C > 0 such that for u ∈ C1([0, T ];C∞c (Ω))
with u(0, ·) = 0 and λ ≥ λ0, we have

‖u‖L2(0,T ;H−1
λ (Rn)) ≤ C‖P∗λu‖L2(0,T ;H−2

λ (Rn)). (4.8)

For the sake of completeness, we prove the following standard proposition which will lead to the
proof of Theorem 4.1.

Proposition 4.3. For f ∈ L2 (0, T ;H1(Rn)) there exists w ∈ H2,1 ((0, T )× Rn) solving the IVP{
Pλw = f, in Q,

w(0, x) = 0, x ∈ Ω

satisfying, ‖w‖L2(0,T ;H2
λ(Ω)) ≤ C‖f‖L2(0,T ;H1

λ(Ω)) for some C > 0 depending only on m and Q.

Proof. Consider the space W := {P∗λu : u ∈ C1 ([0, T ];C∞c (Ω)) and u(T, ·) = 0} equipped with the
norm ‖ · ‖L2(0,T ;H−2

λ (Rn)). Now for f ∈ L2 (0, T ;H1(Rn)), define a functional Tf on W by

Tf (P∗λu) :=

∫
R1+n

f(t, x)u(t, x) dxdt. (4.9)

Now using (4.7), we have that Tf is a continuous linear functional on W with

‖Tf‖W ≤ C‖f‖L2(0,T ;H1
λ(Rn)) (4.10)

and hence by the Hahn-Banach Theorem, Tf can be extended to L2(0, T ;H−2
λ (Rn)) which will be

still denoted by Tf and satisfy (4.10). Finally using the Riesz representation theorem, there exists
w ∈ L2(0, T ;H2

λ(Rn)) such that for v ∈ L2(0, T ;H−2
λ (Rn)) we have

Tf (v) =

∫
R1+n

v(t, x)w(t, x) dxdt. (4.11)

Now combining (4.9) and (4.11) we obtain∫
R1+n

P∗λv(t, x)w(t, x) dxdt =

∫
R1+n

v(t, x)f(t, x) dxdt, (4.12)
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for v ∈ C1 ([0, T ];C∞c (Ω)) such that v(T, ·) = 0 in Ω. This gives us Pλw = f in Q. Since
f ∈ L2 (0, T ;H1(Rn)) we have w ∈ H1 (0, T ;L2(Rn)). Now for v ∈ C1 ([0, T ];C∞c (Ω)) satisfying
v(T, ·) = 0, we use the integration by parts to (4.12) to obtain∫

Ω

w(0, x)v(0, x) dx = 0.

Hence w(0, ·) = 0 in Ω. Finally we use (4.10) and (4.11) to get

‖Tf‖L2(0,T ;H−2
λ (Ω)) = ‖w‖L2(0,T ;H2

λ(Ω)) ≤ C‖f‖L2(0,T ;H1
λ(Ω)).

�

4.1. Proof of Theorem 4.1. First observe that

LA,q
(
eφv
)

= eφ (LA,qv − 2λω · (∇x + A)v) .

Now using the expressions for vg, Bg and LA,qvg = 0, we have that the remainder terms Rg solves

PλRg = −LA,qBg (4.13)

where Pλ := e−φLA,qeφ is the conjugated operator as defined earlier and Bg solves the following
transport equation

ω · (∇x + A)Bg = 0.

Hence from (4.13) and Proposition 4.3, it is clear that the remainder term Rg satisfies

‖Rg‖L2(0,T ;Hk(Ω)) ≤ Cλ−1+k‖Bg‖H3(Q), for k ∈ {0, 1, 2}.
This completes the proof for the construction of exponentially growing solutions to LA,qv = 0.
One can carry out exactly same set of arguments to prove the existence of exponentially decaying
solutions having the form given by equation (4.5) and solution to L∗A,qv = 0. This complete the
proof of Theorem 4.1. Hence from (4.13) and Proposition 4.3, it is clear that the remainder term
Rg satisfies

‖Rg‖L2(0,T ;Hk(Ω)) ≤ Cλ−1+k‖Bg‖H3(Q), for k ∈ {0, 1, 2}.
This completes the proof for the construction of exponentially growing solutions to LA,qv = 0.
One can carry out exactly same set of arguments to prove the existence of exponentially decaying
solutions having the form given by equation (4.5) and solution to L∗A,qv = 0. This complete the
proof of Theorem 4.1.

5. Proof of theorem 2.1

In this section, we prove the main result on stability for the first and zeroth order coefficients.
But first we derive an integral identity using Green’s formula where we will plug in the geometric
optics solutions constructed before. We simultaneously consider exponentially growing and decaying
solutions to avoid any exponential term or boundary terms at initial or final time. To be precise,
we construct u2 and v as the exponentially growing and decaying solutions for the operators LA2,q2

and L−A1,q1 respectively by using Theorem 4.1. Taking 0 < δ << 1, (τ, ξ) ∈ R1+n with ξ · ω = 0
and D(t, x) = A(t, x) := (A1 − A2) (t, x) we have

u2(t, x) = eφ(t,x) (B2 +R2) (t, x), (5.1)

and v(t, x) = e−φ(t,x) (B +R) (t, x) (5.2)
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where

B2(t, x) = ηδ(t)
ξ

|ξ|
· ∇x

(
e−i(tτ+x·ξ)e(

∫
R ω·A(t,x+sω) ds)

)
e(

∫∞
0 ω·A2(t,x+sω) ds),

B(t, x) = ηδ(t)e
(−

∫∞
0 ω·A1(t,x+sω) ds)

and R2, R ∈ L2(0, T ;H2
λ(Ω)) satisfy

‖R2‖L2(0,T ;Hk
λ(Ω)) ≤ Cλ−1+kδ−3〈τ, ξ〉3 and ‖R‖L2(0,T ;Hk

λ(Ω)) ≤ Cλ−1+kδ−3, for k ∈ {0, 1, 2}. (5.3)

Hence, we have for some β > 0

‖u2‖L2(Σ) ≤ eβλδ−3〈τ, ξ〉3. (5.4)

Also, observe that u2(0, x) = v(T, x) = 0 for x ∈ Ω. Now, consider u1 to be the solution of the
IBVP 

LA1,q1w(t, x) = 0, (t, x) ∈ Q,
w(0, x) = 0, x ∈ Ω

w(t, x) = u2(t, x), (t, x) ∈ Σ

and define u := u1 − u2 in Q. Then we get
LA1,q1u(t, x) = 2A(t, x) · ∇xu2(t, x) + q̃(t, x)u2(t, x), (t, x) ∈ Q,
u(0, x) = 0, x ∈ Ω

u(t, x) = 0, (t, x) ∈ Σ

(5.5)

where

A(t, x) ≡ {Aj(t, x)}1≤j≤n := A1(t, x)− A2(t, x), q̃(t, x) := q̃1(t, x)− q̃2(t, x) and

q(t, x) := q1(t, x)− q2(t, x).

Using Green’s formula, we have∫
Q

(LA1,q1u)(t, x)v(t, x) dxdt−
∫
Q

u(t, x)L−A1,q1v(t, x) dxdt =

∫
Ω

u(T, x)v(T, x) dx

−
∫

Ω

u(0, x)v(0, x) dx−
∫

Σ

v(t, x)∂νu(t, x) dSxdt+

∫
Σ

u(t, x)∂νv(t, x) dSxdt,

which after using (5.5) becomes

2

∫
Q

(A(t, x) · ∇xu2(t, x))v(t, x) dxdt+

∫
Q

q̃(t, x)u2(t, x)v(t, x) dxdt = −
∫

Σ

v(t, x)∂νu(t, x) dSxdt.

(5.6)

We observe from (5.1)

A(t, x) · ∇xu2(t, x) = eφ (λω · A(t, x)B2(t, x) +m(t, x)) , (5.7)

for some m ∈ L2(0, T ;H1(Ω)) satisfying the following estimate

‖m‖L2(0,T ;Hk(Ω)) ≤ Cλkδ−3〈τ, ξ〉3, for k ∈ {0, 1} and λ ≥ λ0. (5.8)

An application of the Cauchy-Schwartz inequality together with (5.2),(5.3),(5.7) and (5.8) give us

(A · ∇xu2) (t, x)v(t, x) = (λ(ω · A)B2B + n) (t, x) (5.9)



PARTIAL DATA INVERSE PROBLEM 9

for some n ∈ L1(Q) satisfying

‖n‖L1(Q) ≤ Cδ−6〈τ, ξ〉3. (5.10)

Also from (5.1) and (5.2), it is clear that for λ ≥ λ0∣∣∣∣∫
Q

q̃(t, x)u2(t, x)v(t, x) dxdt

∣∣∣∣ ≤ Cδ−6〈τ, ξ〉3. (5.11)

Now, we find an upper bound for the right hand side of (5.6) using the boundary Carleman estimate
(3.1). We observe∫

Σ

v(t, x)∂νu(t, x) dSxdt =

∫
Σ−,ε/2(ω0)

v(t, x)∂νu(t, x) dSxdt+

∫
Σ+,ε/2(ω0)

v(t, x)∂νu(t, x) dSxdt

where Σ+,ε/2(ω0) is the part of lateral boundary where we do not have any knowledge of Neumann
measurements. Although the contribution from that part can be estimated by using the boundary
Carleman estimate. Meanwhile for ω ∈ Sn−1 satisfying |ω − ω0| ≤ ε

2
, we have Σ+,ε/2(ω0) ⊆ Σ+(ω)

and Σ−(ω) ⊆ Σ−,ε/2(ω0). Thus, we get from (5.4)

‖v∂νu‖L1(Σ−,ε/2(ω0)) ≤ Ceβλδ−3 ‖∂νu‖L2(Σ−,ε/2(ω0)) ≤ Ceβλδ−6〈τ, ξ〉3‖Λ1 − Λ2‖ (5.12)

and

‖v∂νu‖L1(Σ+,ε/2(ω0)) ≤ Cδ−3‖e−φ∂νu‖L2(Σ+,ε/2(ω0)) ≤
2Cδ−3

√
ε

√∫
Σ+,ε/2(ω0)

e−2φ|ω · ν(x)||∂νu|2 dSx

≤ 2Cδ−3

√
ε

√∫
Σ+(ω)

e−2φ|ω · ν(x)||∂νu|2 dSx

≤ 2Cδ−3

√
ελ

(
‖e−φLA1,q1(u)‖L2(Q) +

√
λ‖e−φ∂νu‖L2(Σ−(ω))

)
.

Using (3.1), we have

‖v∂νu‖L1(Σ+,ε/2(ω0)) ≤
2Cδ−3

√
ελ

(
‖e−φ (2A · ∇xu2 + q̃u2) ‖L2(Q) +

√
λ‖e−φ∂νu‖L2(Σ−,ε/2(ω0))

)
.

Finally using (5.3),(5.4),(5.7) and (5.8), we get

‖v∂νu‖L1(Σ+,ε/2(ω0)) ≤ Cδ−6〈τ, ξ〉3
(√

λ+ eβλ‖Λ1 − Λ2‖
)
. (5.13)

After dividing the integral identity (5.6) by large λ and using Equations (5.7) to (5.13), we obtain∣∣∣∣∫
Q

(ω · A)(t, x)B2(t, x)B(t, x) dxdt

∣∣∣∣ ≤ C

(
1√
λ

+ eβλ‖Λ1 − Λ2‖
)
δ−6〈τ, ξ〉3. (5.14)

Next, we relate the integral in the left hand side of (5.14) with the Fourier-transform of A as is
done in [43].∫

Q

(ω · A)(t, x)B2(t, x)B(t, x) dxdt

=

∫
R1+n

(ω · A)(t, x)η2
δ (t)e

(−
∫∞
0 ω·A(t,x+sω) ds) ξ

|ξ|
· ∇x

(
e
∫
R ω·A(t,x+sω) dse−i(tτ+x·ξ)

)
dxdt.
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Now, using the decomposition Rn = Rω⊕ω⊥, we write x := x⊥+sω such that x⊥ ∈ ω⊥ and denote

f(s, t, x⊥) :=

∫ ∞
s

ω · A(t, x⊥ + µω) dµ.

Using these in the previous equation, we have∫
Q

(ω · A)(t, x)B2(t, x)B(t, x) dxdt

= −
∫
R
η2
δ (t)

∫
ω⊥

ξ

|ξ|
· ∇x

(
e
∫
R ω·A(t,x⊥+sω) dse−i(tτ+x⊥·ξ)

)(∫
R
f ′(s, t, x⊥)e−f(s,t,x⊥) ds

)
dx⊥dt

where dx⊥ stands for the surface measure on ω⊥. Now using the Fundamental theorem of calculus
and integration by parts, we get∫

Q

(ω · A)(t, x)B2(t, x)B(t, x) dxdt

=

∫
R
η2
δ (t)

∫
ω⊥

ξ

|ξ|
· ∇x

(
e
∫
R ω·A(t,x⊥+sω) dse−i(tτ+x⊥·ξ)

)(
e(−

∫
R ω·A(t,x⊥+µω) dµ) − 1

)
dx⊥dt,

=

∫
R
η2
δ (t)

∫
ω⊥
e−i(tτ+x⊥·ξ) ξ

|ξ|
· ∇x

(∫
R
ω · A(t, x⊥ + sω) ds

)
dx⊥dt

=

∫
R
η2
δ (t)

∫
Rn
e−i(tτ+x·ξ) ξ

|ξ|
· ∇x(ω · A)(t, x) dxdt = i|ξ|

∫
R
η2
δ (t)

∫
Rn
e−i(tτ+x·ξ)ω · A(t, x) dxdt.

Finally, we obtain ∫
Q

(ω · A)(t, x)B2(t, x)B(t, x) dxdt = i|ξ| η̂2
δω · A(τ, ξ), (5.15)

where ω · ξ = 0.
Let us consider the spherical cap Cω0 := {ω ∈ Sn−1; |ω − ω0| < ε

2
} and the set H = ∪ω∈Cω0Hω

where Hω is the plane passing through origin and perpendicular to ω. Now for (τ, ξ) ∈ R × H,
λ ≥ λ0 and choosing ω(ξ) ∈ Cω0 such that ω(ξ) · ξ = 0 in (5.14) and (5.15), we get∣∣(η2

δ∂kω(ξ) · A
)̂ (τ, ξ)

∣∣ ≤ C

(
1√
λ

+ eβλ‖Λ1 − Λ2‖
)
δ−6〈τ, ξ〉3 (5.16)

where ∂k denote the partial derivative with respect to the space variable xk for k ∈ {1, 2, · · · , n}.
With the help of (5.16), we aim to establish the desired stability estimate via the Fourier inversion.
Because of the stability result for analytic continuation in Proposition 5.3, it is enough to derive
a uniform estimate for the Fourier transform of η2

δA over an open cone only. This we do in the
following lemma. We have crucially used the divergence free assumption on A to prove the following
lemma.

Lemma 5.1. If divx(A) = 0 then for (τ, ξ) ∈ R× C and k ∈ {1, 2, ..., n} we have

|η̂2
δ∂kA(τ, ξ)| ≤ C

(
1√
λ

+ eβλ‖Λ1 − Λ2‖
)
δ−6〈τ, ξ〉3 (5.17)

where, C ⊆ H is an open cone in Rn.
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Proof. For a fixed nonzero ξ ∈ H and k ∈ {1, 2, ..., n}, we choose a set of (n−1) linearly independent
vectors from Cω0 which are perpendicular to ξ and denoted by {ωi(ξ)}1≤i≤n−1. Then, consider the
following set of n linear equations

n∑
j=1

ωji (ξ)η̂
2
δ∂kA

j(τ, ξ) = Gi(τ, ξ), i ∈ {1, 2, ..., n− 1}, (5.18)

and
n∑
j=1

ξj η̂2
δ∂kA

j(τ, ξ) = 0,
(
since ∇x · A = 0 gives ∇x · (η2

δ ∂kA) = 0
)
. (5.19)

Here, {Gi(τ, ξ)}1≤i≤n−1 are real numbers with a upper bound given by (5.17). Now, consider the
matrix Mξ related to the system of equations (5.18) and (5.19) as follow

Mξ =


ω1

1(ξ) ω2
1(ξ) · · · ωn1 (ξ)

ω1
2(ξ) ω2

2(ξ) · · · ωn2 (ξ)
...

...
. . .

...
ω1
n−1(ξ) ω2

n−1(ξ) · · · ωnn−1(ξ)
ξ1
|ξ|

ξ2
|ξ| · · · ξn

|ξ|

 .

From our assumption of {ωi(ξ)}1≤i≤n−1, it is clear that Mξ is a non-singular matrix which is homo-
geneous of order zero in ξ. Hence it suffices to restrict the discussion for ξ ∈ Sn−1. Thus we take
some ξ0 ∈ Sn−1 ∩H and see 0 < | detMξ0|. Now the continuity of determinants readily implies that

for some neighborhood of ξ0 in Sn−1 say C̃ we have

0 < c ≤ | detMξ| (5.20)

since the plane Hξ changes continuously as we vary ξ ∈ C̃, giving a linearly independent set of
vectors {ωi(ξ)}1≤k≤n−1 which also depend continuously on ξ. Note here, the constant c > 0 in

(5.20) is independent of ξ ∈ C̃. Now for any r > 0 and (τ, ξ) ∈ R × C̃, using the uniform positive
lower bound for the matrix Mξ in the system of linear equations (5.18) and (5.19), we get

|η̂2
δ∂kA

j(rτ, rξ)| ≤ C

(
1√
λ

+ eβλ‖Λ1 − Λ2‖
)
δ−6〈rτ, rξ〉3 (5.21)

where k, j ∈ {1, 2, · · · , n}. Define C ≡ ∪r>0rC̃, which is an open cone in Rn. Thus, for (τ, ξ) ∈ R×C,
we get (5.17). �

Lemma 5.2. For R ≥ 1 and δ ∈ (0, T/4), there exist C > 0 and θ ∈ (0, 1) such that the following
estimate holds ∥∥∥|ξ|η̂2

δA
∥∥∥
L∞(B(0,R))

≤ CeR(1−θ)
(

1√
λ

+ eβλ‖Λ1 − Λ2‖
)θ

δ−6θR3θ. (5.22)

Proof. Fix k ∈ {1, 2, · · · , n} and consider the analytic function fR,k given by

fR,k(t, x) = η̂2
δ∂kA(Rt,Rx), for R > 0 and (t, x) ∈ Rn+1.
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For any multi-index γ in R1+n we observe∣∣∣∂γ(t,x)fR,k(t, x)
∣∣∣ =

∣∣∣∂γ(t,x)η̂
2
δ∂kA(Rt,Rx)

∣∣∣ =

∣∣∣∣∫
R1+n

e−iR(s,y)·(t,x)(−i)|γ|R|γ|(s, y)γ(η2
δ∂kA)(s, y) dsdy

∣∣∣∣
≤
∫
R1+n

R|γ|
(
s2 + |y|2

) |γ|
2 (η2

δ∂kA)(s, y) dsdy,

≤ (2T 2)
|γ|
2 R|γ|

∫
R1+n

|(η2
δ∂kA)(s, y)| dsdy.

Now using diam(Ω) < T and apriori bound of A, we have∣∣∣∂γ(t,x)fR,k(t, x)
∣∣∣ ≤ C∗ (2T 2)

|γ|
2 R|γ| = C∗(

√
2T )|γ||γ|! R

|γ|

|γ|!
,

which immediately gives∣∣∣∂γ(t,x)fR,k(t, x)
∣∣∣ ≤ C∗e

R |γ|!
(T−1)|γ|

, for (t, x) ∈ Rn+1 and multi-index γ. (5.23)

Let us recall a specific variant of analytic continuation results from [5] which states

Proposition 5.3 (Appendix A of [5]). For a real analytic function f in B(0, 2) ⊂ Rd, d ≥ 2
satisfying

‖∂γf‖L∞(B(0,2)) ≤
M |γ|!
(2ρ)|γ|

, ∀γ ∈ (N ∪ {0})d

we have

‖f‖L∞(B(0,1)) ≤ NρM
1−θ‖f‖θL∞(U)

where M,ρ,Nρ > 0 and U is an non-empty open set in B(0, 1). Moreover, θ ∈ (0, 1) depends only
on d, ρ and |U |.

For related results on analytic continuation we suggest the reader to consult [49] and also [57].
Now we appeal to Proposition 5.3 for the function fR,k where we take (R×C)∩B(0, 1) as U . Since
fR,k satisfies (5.23), therefore using Proposition 5.3, we obtain

‖fR,k‖L∞(B(0,1)) ≤ CeR(1−θ) ‖fR,k‖θL∞((R×C)∩B(0,1)), for some θ ∈ (0, 1). (5.24)

Since ‖fR,k‖L∞(B(0,1)) =
∥∥∥η̂2

δ∂kA
∥∥∥
L∞(B(0,R))

, therefore using lemma (5.1) and equation (5.24), we get

∥∥∥η̂2
δ∂kA

∥∥∥
L∞(B(0,R))

≤ CeR(1−θ)
(

1√
λ

+ eβλ‖Λ1 − Λ2‖
)θ

δ−6θ(1 +R2)
3θ
2 .

which can be expressed for R ≥ 1 in the following form∥∥∥|ξ|η̂2
δA
∥∥∥
L∞(B(0,R))

≤ CeR(1−θ)
(

1√
λ

+ eβλ‖Λ1 − Λ2‖
)θ

δ−6θR3θ.

�

Now combining (5.22) and the apriori assumption on the potentials, we establish a Sobolev bound
of A in terms of the partial DN map. The main argument here is to set a comparison between the
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large parameters λ and R. Also, we have to choose the small parameter δ accordingly. But first we
observe the following estimate

∥∥η2
δA
∥∥ 2
θ

L2(Q)
=

(∫
R1+n

|η̂2
δA|

2(s, y) dsdy

) 1
θ

=

(∫
B(0,R)

|η̂2
δA|

2(s, y) dsdy +

∫
B(0,R)c

|η̂2
δA|

2(s, y) dsdy

) 1
θ

≤ 2
1
θ
−1



∫
B(0,R)

|η̂2
δA|

2(s, y) dsdy︸ ︷︷ ︸
T1


1
θ

+


∫
B(0,R)c

|η̂2
δA|

2(s, y) dsdy︸ ︷︷ ︸
T2


1
θ

 (5.25)

where the last line uses the convexity of f(x) = x
1/θ
+ ; θ ∈ (0, 1). Now T2 can be easily estimated

after using the apriori assumptions for the potentials. We see

T2 =

∫
B(0,R)c

|η̂2
δA|

2(s, y) dsdy

≤ 1

R2

∫
R1+n

〈τ, ξ〉2|η̂2
δA|

2(s, y) dsdy ≤ 1

R2
‖η2

δA‖2
H1(Q) ≤

C

δ2R2
.

(5.26)

To estimate T1, we use lemma 5.2 . We break T1 into two parts. We consider T1 = T11 +T12, where

T11 :=

∫
B(0,R)∩{(s,y); |y|≤R−

3
n }
|η̂2
δA|

2(s, y) dsdy

≤ ‖η̂2
δA‖L∞(Rn+1)

∫ R

−R

∫
|y|≤R−

3
n

dsdy ≤ CR−2

(5.27)

and

T12 :=

∫
B(0,R)∩

{
(s,y); |y|>R−

3
n

} |η̂2
δA|

2(s, y) dsdy

≤ e2R(1−θ)
(

1√
λ

+ eβλ‖Λ1 − Λ2‖
)2θ

δ−12θR6θ+n+1+ 6
n .

(5.28)

Because of the support condition of {ηδ}δ>0, we have

‖A‖2
L2(Q) ≤ ‖η2

δA‖2
L2(Q) + Cδ. (5.29)

Taking α = 6 + n2+n+6
nθ

and combining (5.25)-(5.28), we obtain

‖A‖
2
θ

L2(Q) ≤C
(
Rα

δ12
e

2R(1−θ)
θ

(
1

λ
+ e2βλ‖Λ1 − Λ2‖2

)
+

1

δ
2
θR

2
θ

+ δ
1
θ

)

≤C

Rαe
2R(1−θ)

θ

λδ12︸ ︷︷ ︸
I

+
Rαθe

2R(1−θ)
θ

+2βλ

δ12
‖Λ1 − Λ2‖2︸ ︷︷ ︸

II

+
1

δ
2
θR

2
θ︸ ︷︷ ︸

III

+ δ
1
θ︸︷︷︸

IV

 . (5.30)
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We now choose λ, δ and R in a way so that the terms (I), (III) and (IV) in (5.30) are comparable.
That is when

δ =
1

R
2
3

and λ = Rα+8+ 2
3θ e

2R(1−θ)
θ (5.31)

and hence there exists κ > 0 (independent of R) such that II of (5.30) can be bounded by

ee
κR‖Λ1 − Λ2‖2. (5.32)

Combining (5.30)-(5.32), it is clear that

‖A‖
2
θ

L2(Q) ≤ C

(
1

R
2
3θ

+ ee
κR‖Λ1 − Λ2‖2

)
. (5.33)

We now choose R > 0 large enough (which in turn depends on the smallness of partial DN map)
which is R = 1

κ
log
∣∣ log ‖Λ1 − Λ2‖

∣∣, so that (5.33) becomes

‖A‖
2
θ

L2(Q) ≤ C
(
‖Λ1 − Λ2‖+ (log | log ‖Λ1 − Λ2‖|)−

2
3θ

)
. (5.34)

We note that, (5.34) can be easily derived for the case when ‖Λ1 − Λ2‖ is not so small. This con-
cludes the proof for stability of first order coefficients from the partial DN map.

Now we establish the stability result for the zeroth order term. There will be no zeroth order term
left in (5.6) once we divide it by large λ. So we have to make necessary changes for deriving Fourier
estimates. We explicitly use here the stability result for the first order terms (5.34). We consider
a different exponentially growing solutions for LA2,q2 , whereas the geometric optics for L−A1,q1 is
same as before which is (5.2). We have

u2(t, x) = eφ(t,x) (B2 +R2) (t, x)

where

B2(t, x) = e−i(tτ+x·ξ)ηδ(t)e
(
∫∞
0 ω·A2(t,x+sω) ds),

and R2 ∈ L2 (0, T ;H2(Ω)) satisfying for k ∈ {0, 1, 2}
‖R2‖L2(0,T ;Hk

λ(Ω)) ≤ Cλ−1+kδ−3〈τ, ξ〉3. (5.35)

For convenience, we rewrite the integral inequality

2

∫
Q

(A · ∇xu2)(t, x)v(t, x) dxdt+

∫
Q

q̃(t, x)u2(t, x)v(t, x) dxdt =

∫
Σ

v(t, x)∂νu(t, x) dSxdt.

(5.36)

First, we simplify all the terms present in left hand side of (5.36). We observe

q̃(t, x)u2(t, x)v(t, x) = q̃e−itτ−ix·ξη2
δ (t)e

−
∫∞
0 ω·A(t,x+sω)ds +B2(t, x)R(t, x) +B(t, x)R2(t, x). (5.37)

We use Cauchy-Schwarz inequality alongwith (5.3) and (5.35) to obtain

‖B2R‖L1(Q) + ‖BR2‖L1(Q) ≤
C

λ
δ−3〈τ, ξ〉3 (5.38)

The other term present in the L.H.S of (5.36) is

2(A · ∇xu2)(t, x)v(t, x) = 2 (λω · AB2 + λω · AR2 + A · ∇xB2 + A · ∇xR2) (t, x)
(
B +R

)
(t, x)

(5.39)
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which is estimated by using the remainder term estimates given in (5.3) and (5.35)∣∣∣∣∫
Q

(A · ∇xu2)(t, x)v(t, x) dxdt

∣∣∣∣ ≤ Cλ‖A‖L2(Q)δ
−3〈τ, ξ〉3. (5.40)

To estimate the boundary term in the R.H.S of (5.36), we proceed as before and obtain∣∣∣∣∫
Σ

v(t, x)∂νu(t, x) dSxdt

∣∣∣∣ ≤ C

(√
K
λ

+ δ−6〈τ, ξ〉3eβλ‖Λ1 − Λ2‖

)
(5.41)

Here K is the R.H.S of the boundary Carleman estimate (3.1) applied to LA1,q1 for u,

K =

∫
Q

e−2φ|LA1,q1u|2 dxdt+ λ

∫
Σ−(ω)

e−2φ|ω · ν(x)||∂νu|2 dSxdt. (5.42)

From (5.5) we have, LA1,q1u = 2A · ∇xu2 + q̃u2. Hence we see

e−φLA1,q1u = 2 (A · ∇xB2 + λω · AR2 + A · ∇xB2 + A · ∇xR2) + q̃(B2 +R2). (5.43)

Thus, we use (5.35) to obtain

K ≤ C
(
λ2‖A‖2

L2(Q) + 1 + eβλ‖Λ1 − Λ2‖2
)
δ−12〈τ, ξ〉6. (5.44)

Combining (5.36)-(5.44), we conclude for (τ, ξ) ∈ R×H∣∣∣η̂2
δ q̃(τ, ξ)

∣∣∣ =

∣∣∣∣∫
Q

e−i(tτ+x·ξ)η2
δ (t)q̃(t, x) dxdt

∣∣∣∣
≤ C

(
λ‖A‖L2(Q) +

1√
λ

+ eβλ‖Λ1 − Λ2‖
)
δ−6〈τ, ξ〉3.

(5.45)

Basically (5.45) gives estimate for the Fourier transform of η2
δ q̃ over the cone R × H in R1+n. So

we apply the stability result for analytic continuation as done before to obtain similar estimate
over arbitrary large balls. Mimicing the arguments presented before, we get the following estimate
similar to (5.30)

‖q̃‖
2
θ

L2(Q) ≤ C

(
Rα′

δ12
e

2R(1−θ)
θ

(
λ2‖A‖2

L2(Q) + 1 + eβλ‖Λ1 − Λ2‖2
)

+
1

δ
2
θR

2
θ

+ δ
1
θ

)

≤ C

Rα′e
2R(1−θ)

θ

δ12
λ2‖A‖2

L2(Q)︸ ︷︷ ︸
I

+
Rα′e

2R(1−θ)
θ

δ12︸ ︷︷ ︸
II

+
Rαθe

2R(1−θ)
θ

+βλ

δ12
‖Λ1 − Λ2‖2︸ ︷︷ ︸

III

+
1

δ
2
θR

2
θ︸ ︷︷ ︸

IV

+ δ
1
θ︸︷︷︸
V

 .

(5.46)

We choose δ and R such that (II),(IV) and (V) of (5.46) are comparable. That is when

δ =
1

R
2
3

and λ = Rα′+8+ 2
3θ e

2R(1−θ)
θ

where α′ = 6 + n+1
θ

. Now using the stability result (5.34), we obtain

‖q̃‖
2
θ

L2(Q) ≤ C

(
eκR‖Λ1 − Λ2‖2µ1 + eκR |log | log ‖Λ1 − Λ2‖||−2µ2 + ee

κR‖Λ1 − Λ2‖2 +
1

R
2
3θ

)
(5.47)
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for some constants κ > 0 and µ1, µ2 > 0. Taking R = µ1
κ

log log | log ‖Λ1 − λ2‖|, we get from (5.47)

that ‖q̃‖
2
θ

L2(Q) has the upper bound

‖Λ1 − Λ2‖2µ1 (log | log ‖Λ1 − Λ2‖|)−2µ2 + (log | log ‖Λ1 − Λ2‖|)−µ2

+ ‖Λ1 − Λ2‖2| log ‖Λ1 − Λ2‖|+ (log log | log ‖Λ1 − Λ2‖|)−
2
3θ .

(5.48)

We note that our choice of R related to the smallness of δ and largeness of λ. Hence, the estimate
(5.48) is valid only when ‖Λ1 − Λ2‖ is small enough. The other case follows easily. Also, we need
smallness of ‖Λ1 − Λ2‖ such that the following hold

‖Λ1 − Λ2‖µ1 (log | log ‖Λ1 − Λ2‖|)−2µ2 + ‖Λ1 − Λ2‖| log ‖Λ1 − Λ2‖| ≤ C.

Thus for both the cases, we arrive at the following estimate where C, α1 and α2 > 0

‖q̃‖L2(Q) ≤ C
(
‖Λ1 − Λ2‖α1

L2(Q) + |log |log | log ‖Λ1 − λ2‖||−α2

)
. (5.49)

Now we want to prove the stability result for q := q1 − q2. We recall

q(t, x) = q̃(t, x) +∇x · A(t, x) +
(
|A1|2 − |A2|2

)
(t, x).

Hence, we obtain the following

‖q‖L2(Q) ≤ ‖q̃‖L2(Q) + (2m+ 1)‖A‖L2(0,T ;H1(Ω)). (5.50)

Since our assumptions on the first order perturbations are more than H1, we can translate the
L2 norm estimates to that of H1 using logarithmic convexity for Sobolev norms. Thus there exist
C > 0 and θ ∈ (0, 1) depending only on m and Q so that we have

‖A‖H1(Q) ≤ C‖A‖θL2(Q) (5.51)

Using (5.51), the L2 stability results in (5.34) and (5.49) in (5.50), we obtain

‖q‖L2(Q) ≤ C
(
‖Λ1 − Λ2‖β1 + |log | log | log ‖Λ1 − Λ2‖||−β2

)
.

for some C, β1 and β2 > 0. This completes the proof of Theorem 2.1.
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